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Abstract 

The late-run Kenai River chinook salmon Oncorhynchus tshawytscha, which are managed under 

the principle of maximum sustained yield (MSY) have experienced declines in run size in recent 

years. Several runs in the past ten years have not met the lower end of escapement goals. Alaska 

Department of Fish and Game sets escapement goals that use the Ricker stock-recruitment model 

as their basis. The historical vital rate parameters deduced from records form the basis for these 

calculations. In this paper, I create a model that uses historical variation in vital rates to simulate 

late-run chinook runs for 20-year periods in the future using recorded average harvest rates, and 

a theoretical lower harvest scenario. From the simulations, the median number of lower 

escapement failures is 2 per 20 year period for both a normal and reduced harvest scenario. No 

significant differences were found between the mean escapements of both harvest scenarios. The 

results of this model suggest that manipulating harvest levels alone will not significantly improve 

escapement, and that other factors in chinook life history will need to be improved to achieve 

that goal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Introduction 

Alaska’s Kenai River supports multiple fisheries for four different salmon species, each 

with their own run timing and seasonality. One of the most important fisheries is that of the 

Chinook Salmon Oncorhynchus tshawytscha. The chinook salmon is the basis for a popular and 

economically important sport fishery in the area. The Alaska Department of Fish and Game 

(ADF&G) manages the fishery under the principle of maximum sustained yield using models 

based on historical data (Sechrist and Rutz 2014). Ensuring these models achieve the desired 

results in harvest and escapement is paramount to the long term sustainability of the fishery. This 

is poignant since 4 of the runs in the last 10 years did not meet lower end of the escapement goal 

range. 

The chinook salmon fishery in the Kenai has two distinct runs, the first run being defined as 

occurring before July 1st, and the late run occurring after July 1st and extending into mid August. 

The early run has a smaller average escapement than the late run. The two distinct runs spawn in 

different parts of the river, and are generally thought of as distinct sub-populations (Fleischman 

and Reimer 2017). 

Chinook salmon migrate simultaneously with other salmon species. When counting by ARIS 

sonar, the length of the fish is able to be measured, however the species is not discernable. 

Fleischman and Reimer (2017) found that sockeye salmon, one other most prevalent species in 

the Kenai, is not likely to be over 75cm from mid eye to tail fork (METF). Therefore, in 

measurements, only salmon over 75cm METF are counted as chinook salmon. 

In addition to the sonar counts, ADF&G counts salmon through records of commercially caught 

salmon, personal-use, and sport caught salmon. These statistics contribute to the sonar data to 

give escapement and harvest numbers. 

Projection of the yearly run size and escapement is a goal which ADF&G works toward in order 

to manage the fishery sustainably. Fleischman and Reimer (2017) constructed a state-space 

model to determine vital rates and historical run re-construction for the Kenai river fishery. They 

determined lower and upper bounds for the vital rates based on the Ricker stock recruit model.  

The Ricker model is as follows: 

𝑅 = 𝑆𝛼𝑒−𝛽𝑆 

R: Number of recruits 

S: Number of spawners 

α: Recruits per spawner 

β: A term for density dependence. 

Re-constructed vital rates for the fishery is based on varied sources of data from ADF&G 

extending back to 1986. From this data set, the vital rates of the fishery can be extracted and 



fitted to a stock recruitment model. The median value for α derived from their model for late run 

chinook was α=3.5. The .05 and .95 percentiles were 1.6 and 8.7 respectively. The median value 

for beta was 𝛽 = 3.03 ∙ 10−5 with .05 and .95 percentiles from 1.56 ∙ 10−5 to 4.89 ∙ 10−5 

(Fleischman and Reimer 2017). 

Maximum sustained yield occurs in this model at the number of spawners where the difference 

between recruits and spawners is the greatest. This is given by the following approximation: 

𝑆𝑀𝑆𝑌 =
𝑙𝑛 𝛼

𝛽
[0.5 − 0.07 ln 𝛼] (Hilborn 1985). This corresponds to the peak of the graph of per-

generation increase in Figure 2 and is the mean escapement goal. 

With the parameters given, this calculates the mean for escapement goal at 17,046 spawners. In 

Fleischman and Reimer (2017), their range given for escapement is 13,500–27,000 spawners for 

their 2017 escapement goals including variation in the parameters according to their state-space 

model. Figure 1 shows the number of recruits as a function of the number of spawners using 

median vital rates. Figure 2 shows the per-generation increase in population as a function of the 

number of spawners referred to here as ‘Delta R’. 

 

 

Figure 3 shows the ratio of the number of recruits to spawners as a function of the number of 

spawners using spawner-recruit data from 1986 through 2012 in the Kenai River. The trend-line 

function of this allows a simplified way of observing the fit of the model to recorded data. 

𝑅/𝑆 = 𝛼𝑒−𝛽𝑆 

 The fit explains a portion of the variation in data (R2, 0.373). 

Figure 1: Recruits plotted as a function of number 

of spawners. 

Figure 2: Delta-R, The per-generation increase in 

recruits plotted as a function of spawners. 



 

 

Simulating Future Runs Based on Historical Data 

ADF&G publishes measured and re-constructed run and harvest data for the late run Kenai River 

chinook salmon (Begich 2019). From this data, the measured parameter α (recruits per spawner) 

can be calculated for each brood year. The natural measured variation in α over years 1986-2012 

is what will be used to simulate environmental stochasticity for 20 year periods starting from the 

last measured total run count. This forward simulation can be used to predict what the Chinook 

salmon run and harvest may look like in the near future, and importantly, predict the frequency 

of runs that don’t achieve escapement goals using measured harvest rates. Knowing the 

frequency of simulated runs that don’t achieve escapement goals will help to fine-tune the 

allowable harvest to the vital rate variation and minimize the likelihood of an over-harvest. 

Ensuring that escapements remain within a margin of ideal levels will help ensure the long term 

sustainability of the fishery.  

 

Methods 

I tabulated run data from 1986 through to 2012 by brood year. This data includes the 

number of parent fish that spawned in a given year, and the number of spawned fish from that 

year that returned to spawn. A brood year is considered all of the fish that were spawned in the 

river during the same season. This is determined by ADF&G by measuring a sample of chinook 

scales of fish caught in their in-river netting project, through sport fishing, and commercially 

caught fish. The scale ring patterns can give an estimate of fish age. Salmon return from the 

ocean to migrate up-river at a variety of ages, meaning that a brood year of chinook returns over 

the course of several years. Data on runs 2013 through 2019 has been collected, however not all 

fish of those brood years have returned and been counted. See Appendix 1 for the run data on 

chinook salmon >75cm. 

Figure 3: Ratio of recruits to spawners plotted as a function of 

the number of spawners.  



 Using the equation 𝛼 =
𝑅

𝑆𝑒−𝛽𝑆
, the value of α for each brood year can be calculated 

(Figure 4). The geometric mean of α for all measured brood years is (mean, 3.22; SD, 1.57). A 

close examination of how this value has changed over time appears to indicate two distinct 

modes, separated by a large ‘bump’ from 1996 to 2002. For this simulation, the values beginning 

in 2003 through 2012 will be used (mean, 2.07; SD, 0.547). This drop in the mean in recent years 

may reflect a change in the life history of chinook salmon. I considered the density dependency 

term β constant in the model. 

 

I used statistics software R to simulate the salmon population for 20 generation periods based on 

the stock-recruit model. The value of α was randomized and fitted to a normal distribution by the 

‘rnorm’ function, which takes a mean and standard distribution to generate a normal distribution. 

All values below 1 were removed to reflect the same observation in the data-set that there were 

no measured values of α below 1 in the data, possibly representing a slight skew in the 

distribution of measured α values. 

I simulated the normal yearly harvest rates by looking at historical rate of harvest and simulating 

the mean and standard deviation (mean, 0.347; SD, 0.0667). The rate of harvest is a proportion 

of the total run. I also will simulate a lower harvest rate scenario with a lower mean of 0.247 and 

the same standard deviation. If the projected escapement was less than the escapement goal, I 

simulated the rate of harvest at 0.08 to reflect that a small harvest occurs before ADF&G restricts 

the fishery when the in-season migration rate is too low. The escapement value to start the 

simulation was the latest recorded escapement in 2019 of 11555. 

After a simulation was completed, I then counted the number of occurrences that the mean and 

lower escapement goal (17046 and 13500) was not reached over the 20 year period. If an 

escapement did not meet the mean or lower threshold, I labeled it as an escapement failure. This 

process was repeated 50 times, each simulation representing a different possible 20 year period 

for a total of 1000 chinook run simulations. A second set of 1000 generation simulations was 
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Figure 4: the value of alpha (recruits per spawner), plotted over years 1986 

through 2012 



done to calculate the number of escapement failures using the lower harvest rate scenario. See 

Appendix 2 for the model’s R code. 

Results 

 

 

 

Fit of Simulated Data to Model Predictions 

When the simulated data points are fit to the stock-recruit model (Figure 5), 16% of the variation 

can be explained by the model. This is lower than the 37% fit of the measured data, and may be 

explained by an excessive amount of variation programmed into the simulated parameter α.   

Normal Harvest Scenario 

For the normal harvest scenario, the mean of the lower escapement goal failures is 2.5 failures, 

median 2, over 20 years, and the mean of the mean escapement goal failures is 6.72, median 6.5 

over 20 years (Figure 6). The mean escapement for the total of 1000 simulated runs is 18142. 

Lower Harvest Scenario 

In the lower harvest scenario, the mean of the lower escapement failures is 2.56 failures, median 

2 over 20 years, and the mean of the mean escapement failures is 6.92, median 6, over 20 years. 

(Figure 7). The mean escapement for the total of 1000 simulated runs is 18078 spawners.  

Comparison of Means 

There is not a significant difference in mean escapement between the two harvest scenarios (T-

Test: P>0.05). In comparing the count of lower escapement failures between the two harvest 

scenarios, no significant differences were found using a Poisson distribution GLM. 

Figure 5: The simulated data points showing the fit of the generated data points 

to the stock-recruit model.  



 

 

Discussion 

 Managing the health of the Kenai river chinook is of importance for the economy, 

culture, and ecological integrity of the local area. The lack of difference between mean 

escapement and number of escapement failures in the normal and reduced harvest scenarios 

suggest that modest reductions in harvest are not likely to substantially improve escapement 

numbers in the chinook fishery. What may be deduced is that improving escapement will require 

improving survivorship at some life stage before spawning, or spawning success once the fish 

migrate up-river. 

The excessive variation from the spawner-recruit model in the simulation is caused by excessive 

variation in α. Even though the mean and standard deviation were taken from the real data, these 

descriptive statistics may not capture the distribution accurately. The ‘rnorm’ function in R may 

also contribute to excessive variation.  

The lower number of recruits per spawners occurring from years 2003-2012 could be indicative 

of a change in survival for chinook salmon at some stage in their life history. Ohlberger et al. 

(2018) proposes that increased predation at sea from marine mammals, fishing pressures and 

climate change as possible explanations for demographic changes. Spawning habitat degradation 

or some other kind of disruption in the spawning process could also explain the reduction in 

recent years. This would require a focus away from pure spawning and recruitment style 

management, and a shift toward looking at habitat improvement. I only focus on the late run 

chinook salmon in this paper, which is known to spawn in the main-stem river, whereas the early 

run spawns in the tributaries (Fleischman and Reimer 2017). These two populations could be 

experiencing different trends based on their different timing and spawning locations. 

The value for β was held constant arbitrarily, a better study design would include variations in 

both of these model parameters, which would better reflect the real population. The value of β 

determines the effective carrying capacity taking into account intra-species competition, and also 

the rate of growth for each escapement size, and therefore realistically will fluctuate. Assuming 

that β remains constant is assuming that the carrying capacity does not change. 

Figure 6: Number of escapement failures in the 

‘normal harvest scenario.’ 

Figure 7: Number of escapement failures in 

the ‘lower harvest scenario.’ 



Chinook migrate at ages commonly from 2 to 7 years old (Hankin et al. 1993). This model did 

not take into account the age proportions of chinook salmon, namely that they will not all spawn 

at the same age. The effect of this is that any effect on the numbers and spawning effectiveness 

of a brood year of fish will be distributed over runs occurring in a 3 to 4 year span. I suspect this 

would have a dampening effect on the results of any single escapement failure on future 

populations due to it being distributed over multiple years. 

In this model, any change in a group of spawners affects the immediate next run of fish. This is a 

simplification of the model that reduces its realism. Future models building off of this one should 

take the age proportions and age distributed runs into account to enable a more accurate model of 

this population.  
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Appendix 1: Kenai River Late-Run Chinook Salmon >75cm counted by run year 

Run Year 4 Year 5 Year 6 Year 7 Year 
Total 
Run Escapement Harvest Exploitation 

1986  28843 28643 2881 60367 42101 18266 0.303 

1987  20049 53373 1315 74737 48393 26344 0.352 

1988  5929 55173 9289 70391 42815 27576 0.392 

1989  6559 29895 5161 41615 26253 15362 0.369 

1990  4818 26277 1884 32979 25139 7840 0.238 

1991  8331 26933 2381 37645 27133 10512 0.279 

1992  9550 39956 1610 51116 37469 13647 0.267 

1993  9510 46669 3341 59520 33432 26088 0.438 

1994  7332 42680 3149 53161 26145 27016 0.508 

1995  10074 30070 3353 43497 24874 18623 0.428 

1996  14613 28372 968 43953 29056 14897 0.339 

1997  9872 34222 1251 45345 25221 20124 0.444 

1998  8100 33132 1898 43130 33385 9745 0.226 

1999  10198 33151 2308 45657 29100 16557 0.363 

2000  12019 28189 1511 41719 25502 16217 0.389 

2001  9976 34200 1578 45754 29531 16223 0.355 

2002  13123 40530 2257 55910 40514 15396 0.275 

2003  17229 49350 1405 67984 48461 19523 0.287 

2004  24465 64462 2385 91312 65112 26200 0.287 

2005  15010 65599 3580 84189 55688 28501 0.339 

2006  10299 40112 6711 57122 39305 17817 0.312 

2007  12498 27552 4371 44421 29664 14757 0.332 

2008  8869 30653 3158 42680 28094 14586 0.342 

2009  4703 21594 1747 28044 18251 9793 0.349 

2010  8760 11719 1701 22180 13037 9143 0.412 

2011  6843 18636 902 26381 15731 10650 0.404 

2012  8470 13681 1055 23206 22453 753 0.032 

2013  3622 9994 766 14382 12305 2077 0.144 

2014  4684 8225 494 13403 11980 1423 0.106 

2015  6302 15302 1192 22796 16825 5971 0.262 

2016  12114 12091 1213 25418 14754 10664 0.420 

2017 102 15116 13643 1053 29914 19948 9965 0.333 

2018  6016 11206 349 17571 16813 758 0.043 

2019 6 4664 7839 272 12780 11555 1225 0.096 

 

 

  



Appendix 2: Model to simulate potential escapements for 20 year periods 

```{r} 

# A method to simulate the population of Kenai River Chinook salmon over time 

 

 

LWR_Escapement_Goal <- 13500 

Escapement_Goal  <- 17046 

 

mean_alpha <- 2.06 

sd_alpha <- 0.547 

 

beta <- 3.03e-05 

 

Mean_Harvest_Rate <- 0.347 

SD_Harvest_Rate <- 0.0667 

 

year <- 1 

sim <- 1 

 

Table <- (c()) 

Results <- (c()) 

Simulation2 <- c() 

 

``` 

 

```{r while loop} 

while (sim<=50) { # Runs selected number of simulations 

  Parent_Escapement <- 11555  #Sets initial escapement for the 20 year period 

  Harvest_Rate <- rnorm(30,Mean_Harvest_Rate, SD_Harvest_Rate) 

  alpha <- rnorm(30,mean_alpha,sd_alpha) 

  alpha <- alpha[ alpha > 1 ] # Removes alpha values less than 1. Helps to skew the distribution to match the real one 

  Harvest_Rate <- Harvest_Rate[Harvest_Rate > 0.1] 

   

  while (year<=20) { # 20 year period simulation loop 

     

    Total_Run <- Parent_Escapement*alpha[year]*exp(-beta*Parent_Escapement) #1 The Ricker model 

    Escapement_Projection <- Total_Run-(Total_Run*Harvest_Rate[year]) #What the Escapement is projected to be 

with normal harvest rates. 

     

    if (Escapement_Projection >= Escapement_Goal) { #2 Determine the harvest rate if  slow year or normal year 

       

      Harvest <- Harvest_Rate[year]*Total_Run 

   

    } else { 

         

      Harvest <- 0.08 * Total_Run # Harvest isn't exactly zero in slow run years even after fishery shut-down. 

   

    }  

     

     

    Parent_Escapement <- Total_Run-Harvest # 3  Compute this last so that it is programmed for the next loop 

    Table <- rbind(Table, c(year,sim,Total_Run,Harvest,Parent_Escapement,alpha[year])) 

     

     

 



    year <- year+1 #Increase year number by 1 

  } 

 

   

  year <- 1 # Reset year number 

   

  Simulation <- as.data.frame(Table) 

  names(Simulation) <- c('Year','sim','TotalRun','Harvest','Escapement','Alpha') 

   

   

  a <- any(Simulation$TotalRun <= 2000) #Checks for any 'crash' in the population. 

   

  b <- length(which(Simulation$Escapement < Escapement_Goal)) 

   

  c <- length(which(Simulation$Escapement < LWR_Escapement_Goal )) 

   

  Results <- rbind(Results, c(sim,a,b,c)) 

  Simulation2 <- rbind(Simulation2,Simulation) # Diverts the data into separate data frame so we can look at it. 

  Simulation <- (c()) #Erases the data frame with yearly information so that the counts of escapement failures remain 

accurate 

 

  Table <- (c()) #Erases the table so that only one  simulation is contained in it at a time. 

  sim <- sim+1 # Increases the simulation number by 1 

  rm(a,b,Harvest_Rate,alpha) 

} 

 

Results <- as.data.frame(Results) 

names(Results) <- c('Simulation','RunFailures','Mean Escapement Failure', 'Lower Escapement Failure') 

sim <- 1 #resets sim number 

``` 

 

```{r} 

write.csv(Simulation2,"NORM_SIM.csv", row.names = FALSE) 

write.csv(Results,"NORM_Results.csv", row.names = FALSE) 

``` 

 


